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LIQUID CRYSTALS, 1989, VOL. 5, No. 2, 693-696 

Second order elasticity in nematics: a new anchoring source 

by G. BARBER0 and A. STRIGAZZI 
Dipartimento di Fisica, Politecnico di Torino, C.so Duca degli Abruzzi, 24, 

1-10129 Torino, Italy 

By considering, in the expression of the nematic free energy density, an 
additional term in the square of the director second derivatives, an unexpected 
anchoring source results, due only to surface and bulk elastic constants. As an 
example, the case of a planar homogeneous and of a homeotropic nematic cell, 
equally anchored on both walls, is discussed. In both situations the new anchoring 
source has a destabilizing effect. 

1. Introduction 
The paradoxes [l] resulting from the presence of the K,3 surface term in the 

Nehring-Saupe free energy density for nematics [2] can be bypassed by introducing 
new terms in the square of the director second order derivatives [3]. In this paper we 
show that the anchoring can be partially explained as an effect of both surface and 
bulk elasticity. Moreover, we note that the importance of terms involving higher order 
derivatives has already been noted but not analysed in detail 141. 

2. Theory 
We consider a planar homogeneous nematic cell, with the walls normal to the z 

axis, at the positions z = f d/2. If the cell is subjected to a magnetic field parallel to 
the z axis, a Freedericksz transition can result, involving a splay-bend distortion, 
dependent only on the z coordinate. For the sake of simplicity, we consider just a 
single principal bulk elastic constant K = K , ,  = K,, (renormalized following [2]) and 
one second order bulk elastic constant K*. Just above threshold, from symmetry 
considerations, the bulk free energy density of the cell is given by 

f B  = + K * e 2  - XaB202), ( 1 )  

where 8 is the tilt angle, measured from the wall, the prime denotes the derivative with 
respect to z ,  xa > 0 is the magnetic susceptibility anisotropy and B is the magnetic flux 
density. 

We suppose that there is an explicit anchoring nematic substrate, i.e. in the 
formalism of Rapini-Papoular the nematic substrate interaction energy is 

f s  = +wO2(+d/2) + )w02(-d/2), 

where w is the anchoring strength due, for instance, to the equal surface treatment of 
both walls. If K* is assumed to be zero, then K, ,  must also be considered zero [l], and 
all of the sample reorients, in the case of a magnetic flux density larger than a critical 
value, as is well known [5]. 

We now demonstrate that the presence of K* # 0 implies some kind of anchoring, 
which destabilizes the preimposed homogeneous planar orientation: the critical value 
will become smaller than the previous one. In any case, the surface free energy density 
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694 G. Barber0 and A. Strigazzi 

coming from the mixed splay-bend term is, if the undisturbed configuration is 
homogeneous planar, 

fs = K,,(88’)’. (2) 

Such an energy term in nematics has been criticized recently by Pleiner [6], who 
observed that there is no compatibility with thermodynamic stability. This is correct, 
since no terms involving the square of the second order derivatives were taken into 
account in [6]. 

Following our point of view, the Euler-Lagrange equation reads as a fourth order 
equation 

K*@“) - KF - XaBZd = 0, (3) 
which, by putting q = z/d, I = (K* /K) ’” /d  and 5 = ( K / X , ) ’ ’ ~ / ( B ~ )  as a reduced 
coordinate, a reduced bulk elasticity, and a reduced magnetic coherence length 
respectively, gives 

(4) 1 2 8 ’  - iJ - r-20 = 0, 

where an overdot indicates a derivative with respect to q. The solution of the Euler- 
Lagrange equation (equation (4)) is obtained as 

= a1 cos(A,rl) + a2 cosh(12rl). (5 )  
because of the symmetry O(q) = d( - q) ,  where 

A, = 5-1 + O(1) 

1, = I-‘ + O(1). 

and 

Notice that I < 1, since K* < Kd’, K*/K = 6’ which is the square of a characteristic 
length 6, of the order of the molecular interaction. The two integration constants 
(a1 and a*) are solutions of a homogeneous system related to the boundary conditions 

m, - (1 + R)B, + L-18, = 0, 

I’do + Re, = 0, 

where the index 0 corresponds to tj = - 3, R = K , , / K  being the surface bulk elastic 
ratio, and L = K/(wd)  is the reduced extrapolation length. The system (6) becomes 

[(I + R)A, sin(A,/2) - L - ’  cos(AI/2)]a, 

- [RE, sinh(&/2) + L-’ cosh(A2/2)]a, = 0, (7) 
Ra, cos(Al/2) + (1 + R)a2 cosh(A,/2) = 0. 

The coefficient determinant must be zero, giving 

(L-’ - Z-’R’)/(~ + I?)’ = t-’ tan(1/2<), (8) 

L-’ = tan(1/2t), (9) 

since tanh (1/2<) x 1 .  This is a generalization of the Rapini-Papoular equation [5 ] :  

valid in the case of usual anchoring, without second order elasticity. 
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Second order elasticity and anchoring 69 5 

By comparing equations (8) and (9), it appears that the ratio 

w* = (K/S)R2 (10) 
behaves as a new kind of anchoring strength, which results only from the elastic 
properties of the nematic liquid crystal, destabilizing the initial homogeneous planar 
orientation, whereas the equivalent anchoring strength is given by 

W’ = (W - ~ * ) / ( l  + R)2.  (1  1) 

Note that the second order elasticity also gives a scale factor (1 + R)2 > 1, if K , ,  > 0 
[7]. Of course, w must be greater than w*, i.e. IRI < (//L)‘/’ or, in other words, 
IRI < ( S ~ / l y ) ” ~ ;  otherwise the undisturbed director profile cannot have a planar 
homogeneous configuration, and the tilt angles at the walls are far from the easy 
directions. Moreover, we observe that in the strong anchoring hypothesis equation 
(8) gives the well-known result 5, = n-’. 

In connection with the stability of the undistorted homogeneous planar configur- 
ation, it is necessary to calculate the total free energy of the cell close to such a 
configuration. By substituting equation (5) into the expression for the reduced total 
free energy, defined as 

I/’  

(8’ + P O 2  - tp2e2)dV - 4R@, + ~ L - v ; ,  (12) s- 112 
G = 2Fd/K = 

we find that G is an ordinary function of a1 and a2.  The minimum conditions imposed 
to equation (12) give the boundary condition (6),  and the undistorted configuration 
is stable only if 5 < t,, as defined in equation (8), since the hessian H = (d2G/8a:) 
(a2G/8a:) - (82G/8a18a,)2 is given by 

H = (1 + R)21-’ cos’(l/2~)sinh2(l/21) 

x [(L-l - Z-’R2)/(I + R)’ - t-’ tan(1/2t)] (13) 
and changes its sign for 5 = t,; moreover, the second derivative of G with respect to 
a, is positive, for a, = a2 = 0, if IR( 5 (Z/L)’/’, as previously pointed out. 

3. Discussion 
From the previous criticism [I] on the consistency of an elastic theory involving 

only the elastic constants K and K13  it follows that, if K,,  = 0, then K* also vanishes. 
However, no experimental values of Kl3 and K* are yet available. This fact yields 
difficulties in managing the results in equations (10) and (1 1). Anyway, we consider 
the prediction of Nehring and Saupe [2], that R = -6/5 can be assumed. On the 
other hand, the characteristic length S may be chosen between about 100 and l000A: 
this means that W* goes from about to lo-’ ergcmp2. Hence, the presence of 
both KI3 and K* can explain the disorder configuration, which occurs without a 
particular surface treatment. 

The results obtained are important, since they allow us to conclude that, for a 
weakly anchored nematic cell, either homogeneous planar or homeotropic, it is 
possible to consider both K13 = 0 and K* = 0 for in connection with the situation 
close to the threshold, under the condition that the anchoring strength is w’ as defined 
in equation (1 1). In fact, instead of equation (6),  just one equation will give in this case 
the boundary condition, viz. 

-do + L’-,e, = 0, (14) 
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696 G. Barber0 and A. Strigazzi 

where L’ = K/w’d. Moreover, as was demonstrated recently by Yokoyama et al. [S], 
the principal contribution w to the anchoring strength is affected by the variations of 
the ordinary elastic constants close to the boundary, coming, for instance, from the 
gradient of the order parameter. 

Could, then, all anchoring be considered as an implicit anchoring, due only to the 
elastic behaviour of the nematic? From such a point of view all surface treatments, 
such as surfactants, rubbing, and so on, would just introduce impurities into the cell, 
changing locally the elastic properties of the sample, and determining by an indirect 
way the effective anchoring conditions. 

The authors are indebted to G. Durand and N. V. Madhusudana for useful 
discussions during the 2nd International Topical Meeting on Optics of Liquid Crystals, 
Torino, Italy, 14-20 October, 1988. This work was partially supported by the 
Minister0 della Pubblica Istruzione of the Italian Government. 
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